Compression and an IR Approach to XML Retrieval

Vo Ngoc Anh

Alistair Moffat

Department of Computer Science and Software Engineering
The University of Melbourne
Victoria 3010, Australia
www.cs.mu.oz.au/"{vo,alistair}

Abstract

A two-phase evaluation scheme is proposed for XML
retrieval. In the first phase, a modified vector space
model is employed to obtain similarity scores for the
textual nodes of XML trees. In the second stage, the
scores are propagated upward in the XML trees, with
scores of the textual nodes being modified and scores of
other nodes being generated. As a result, while a vec-
tor space ranking is used, the final scores computed do
not truly reflect the vector space scores. In addition to
the two-phase evaluation, an integrated compressed file
system is proposed for both storing and retrieving XML
documents. This leads to an efficient representation of
XML repositories.

1 Introduction

Applying IR techniques to XML retrieval is undoubt-
edly an interesting and promising approach. Conven-
tional IR techniques, however, cannot be employed
directly because of the need to handle content-and-
structure queries. To accept this kind of query, retrieval
systems must capture the structure of the documents
and queries, and carry out some computation over these
structures. In this paper we focus on two of the vari-
ous aspects of the task. The first focus is on an alterna-
tive method to extend the vector space model to XML
retrieval. The second is a unified compression scheme
that supports both the retrieval model and efficient de-
compression of any part of an XML document. While
the first goal is core to the INEX project, the second goal
should as well be regarded as important. XML docu-
ment collections can be large. Moreover, retrieval of
XML elements involves not only the document content
but also its structure, potentially consuming more disk
space than retrieval of flat documents would.

A number of techniques to extend the vector space
model to XML retrieval have been presented. Three
main approaches are worth commenting on. Fuhr et al.
[1998], Fuhr and GroRjohamn [2001] explicitly indi-
cate indexing nodes, each of which is a group of XML
nodes. Indexing is then done for these nodes. This
static index is used directly for query processing. Grabs
and Schek [2002] proposed to generate vector space
statistics on-the-fly during query processing. In this ap-

proach, a static index is built only for basic indexing
nodes, which can be defined manually or automatically.
At query time, the basic index is used to derive appro-
priated vector space statistics depending on the query
scope. Carmel et al. [2002] chose to index the pairs
(path, word) (as opposed to the conventional indexing
of words only), where path is the XML path of the node
that contains word.

A common property of these techniques is that they
are tightly bound to the vector space model. During the
evaluation of a query, the statistics are retrieved or gen-
erated for all nodes that are in the query’s scope. These
statistics are then used to compute similarity scores and
rank the nodes. The commaon property likely guarantees
the correctness of applying a vector space ranking, since
otherwise there would be serious problems with ranking
inconsistency. On the other hand, semi-structured XML
documents are quite different from flat documents for
which vector space ranking is good, and an alternative
formulation of the similarity score might be preferable.
Moreover, it is still not clear how to fairly combine dif-
ferent kinds of XML node according to a common sta-
tistical scale.

We use a vector space ranking technique because of
its efficiency and effectiveness for flat text retrieval. But
we do not rely exactly on the vector space score. In-
stead we adjust the scores, possibly more than once. The
“right” statistics for an appearance of a word are counted
once for the node that contains the word directly. Only
these nodes are then processed through the conventional
vector space ranking, regardless of whether they are
compatible with the structural conditions of the query.
Even at this stage, the scores computed are not exactly
vector space scores — they are augmented according to
the structural conditions. After the IR stage has been
done, a second stage is conducted where the scores are
propagated upward in the XML tree, and then the top
nodes are selected as answers.

For our second goal — providing a compression
framework for XML retrieval, we mainly rely on the
existing work. Our contribution here is extending the
current compression framework for flat text retrieval to
XML retrieval. We introduce additional files to keep
the XML collection in the compressed form, allowing
effective decompression of any XML node.

The remainder of the paper is organized as follows.

<article>
<atl> XML Retrieval </atl>
<au sequence="first">
<fnm> First N. </fnrm>
<ref> Surname </ref>
<lau>
<sec> <st> Everything </st>
<p>
Everything about XML </it>
and XML retrieval </it>.
<lp>
</sec>
</article>

Figure 1: Example of XML document.

Section 2 introduces some concepts of XML documents
and presents our opinion on query format and interpreta-
tion of queries. Then, section 3 describes the data struc-
tures employed for compressing XML collections. Sec-
tion 3 also introduces a general scheme for query evalu-
ation with these structures. Sections 4 and 5 describe the
main techniques employed for the two phases of evalu-
ation. Section 6 outlines the experiments we undertook.

2 Documentsand queries

Documents A simplified example of an XML docu-
ment is provided in Figure 1 and is used throughout this
text to illustrate the concepts introduced.

It is convenient to list some of the standard def-
initions here. Thus, an XML document is a set of
nodes or elements such as <article> and <p>. Each
node is associated with a path, for example, /article
and /article/sec/p. The exact location and content of
a node is defined by its positional path. For exam-
ple, if the above XML document is the first one in a
collection, then /article[1]/sec[1]/p[1]/it[1] and /arti-
cle[1])/sec[1]/p[1)/it[2], respectively, is used to indicate
XML </it> and XML retrieval </it>.

The following concepts are introduced for this paper.
A node is called textual if and only if it has some proper
free text which does not belong to any of its children or
descendants. Otherwise, the node is called skeleton and
it contains no proper text. In the above document, for
example, textual nodes are

[article[1]/atl[1],

/article[1])/au[1])/fnm[1],

/article[1)/au[1]/ref[1],

farticle[1]/sec[1]/st[1],

[article[1]/sec[1]/p[1],

[article[1])/sec[1])/p[1]/it[1],

(article[1]/sec[1])/p[1)/it[2];

and the skeletal nodes are

[article[1],

farticle[1]/au[1],

farticle[1]/sec[1].

<query>
<te> article </te>
<ce>
<cp> bdy/sec </cp>
<cw> nonmonotonic reasoning </cw>
</ce>
<ce>
<cp> hdr/lyr </lcp>
<cw> 1999 2000 </cw>
<l/ce>
<ce>
<cp> tig/atl </cp>
<cw> <nw> calendar </nw> </cw>
<lce>
<cw> belief revision </cw>
<kw>
nonmonotonic reasoning belief revision
<lkw>
</query>

Figure 2: Example of query: the reformatted version of
topic 09.

Note that normally in an XML tree, leaf nodes
are textual, and internal nodes are skeletal, but this
cannot be assumed. A counter-example is the /arti-
cle[1]/sec[1])/p[1], which is an internal node, but con-
taining some proper text. This type of node is popular
in the INEX collection.

The textual part of a textual node, including any ac-
companying punctuation, is called a textual item of the
node wrt the XML collection. Thus, the textual item of
[article[1])/au[1]/ref[1] is Surname, while that of /arti-
cle[1]/sec[1])/p[1] is Everything about and.

Queries We appreciated the straightforward query
format supplied by the INEX organizer and described
by Fuhr et al. [2002]. In our opinion, the format
(of course, after removing Description and Narrative
fields) is simple and powerful enough, at least for the
purpose of IR approaches.

To make the queries more consistent, we introduced
a couple of small changes to the initial format. Firstly,
words appearing in a ce field are included inside the
field itself. Secondly, a formal element <nw> ...
</nw> is added to surround negative words in queries.
For example, topic 09 is now reformatted as shown in
Figure 2.

We believe that the Keywords of the original INEX
queries is unnecessary and it would better be removed
totally from the query format, making queries simpler
and shorter. However, to be consistent with the settle-
ment of this round of INEX, this element is left in this
format with the new name of <kw>.

There is a number of points that should be made clear.
Firstly, the Title field in this format is removed since
we consider that field the main part of queries. As the
field is in fact a structured node, it is simply removed.

Secondly, the format is used for both content-only and
content-and-structure queries, and we also recommend
the use of queries which have no te field but contain ce
fields. Thirdly, it is easy to build a script to transfer all
INEX queries to the new format automatically. And last,
except for the te field, all other information should be
considered by a retrieval system as inexact constraints
as is also the case in conventional IR ranking. For ex-
ample, the first ce element in 2 should be interpreted as
the desire of having the sections discussing about “non-
monotonic reasoning”, and it does not necessarily mean
that the sections must contain these word. In the same
manner, a retrieved article for the query, for example,
might not be published in 1999-2000 as required by the
topic’s author.

3 System Architecture

Backbone Our system is based on the MG system (see
http://ww. cs. nu. oz. au/ ng/). The main feature
of MG for text retrieval is that it applies compression
to the documents as well as to the index. This feature
is especially suitable for our task of building a compact
repository for XML retrieval. We report here only the
changes made specifically for this task.

Filesystem Textual and related files: All textual items
of the XML documents are gathered together in a data
structure, called textual file. That is, each item in this
file corresponds to one textual node of a certain XML
document. This file is compressed and is accompanied
with some auxiliary files supporting direct access to, and
decompression of, each of of the textual items. An il-
lustration of textual files is given at the bottom left of
Figure 3. Information about text compression methods
employed, as well as about the auxiliary data structures,
can be found in [Witten et al., 1999].

Structural files: Each node (either textual or struc-
tural) of any XML document has an entry in a structural
file. In this data structure, entries are stored in the order
of their appearance (or, more correctly, of the appear-
ance of their opening markups) in the XML collection.
An entry of the structural file describes a node’s struc-
ture and its position in the parent’s node. The entry in-
cludes

o the opening markup of the node (including the ac-
companying parameters, if any);

e distance to the parent node (that is, number of
nodes between the node and its parent, which is
0 if the current node is a root node);

o byte-offset position of the beginning of the node
relative to the (end of) its immediately preceding
markup;

e pointer to the textual item of the node, that is, to
the corresponding item in the textual file (the value
is 0 if the node is a skeleton).

The bottom right block in Figure 3 illustrates the content
of a structural file. Note that for each node, the closing
markup is not stored.

To the structural items, random access is needed.
Since all the numerical values of the file is generally
small, and the texts (that is, the markups) are generally
repeated, the file can be compressed effectively even
with the random access requirement. Our ad-hoc so-
lution is to use a dictionary for all the text parts, then
to replace each text with the pointer to the correspond-
ing element in the dictionary, hence transforming each
structural item to a quadruple of numbers prior to the
compression. Conventional compression techniques for
small integers are then applied.

Note that with support of the textual files, which
allow direct access and decompression of any textual
item, the structural file can be used to build back any
node of the original XML document collection. An ex-
ample of this process is given in Figure 3. Truly, the
compression is lossy: when there is no text between two
consecutive markups, the punctuation between them (if
any) is not stored anywhere. However, as the primary
purpose of the XML documents is to have the structure
of documents along with their texts, not to render them,
the compression scheme can be considered as lossless.

Text-structure mapping files: A text-structure map-
ping file is illustrated at the top of Figure 3. The file
maps any item in textual file to its corresponding en-
try in the structural file. During query processing it is
better to have the mapping resided in the memory, so
the random access to the file is not required. Hence,
the numbers indicating absolute position of a structural
node (in the structural file) are replaced by the gaps be-
tween it and its preceding . That is, run-length coding is
applied. In our current implementation, Elias’s Gamma
code Elias [1975] is used for this purpose.

Index files: Changes have been made to MG to suit
our needs, in both the indexing and the querying mod-
ules. While the changes are already reported in Anh and
Moffat [2002], it is worth reiterating that the weighting
scheme for terms of the textual items is integrated into
the index, and that during query processing, the calcula-
tion of cosine measure for these items is not required.

Remark: It might be arguable about the need to divide
the XML collection into textual, structural and the map-
ping files since keeping them in one file might be better
for compression. The point is that during query evalu-
ation the structural parts are needed anyway, when the
whole textual parts are needed only when the documents
need to be rebuilt to present as the answer. Another ar-
gument might be that it would probably better to insert
empty items to the textual file to represent the structural
nodes, and hence exclude the mapping file from consid-
eration. However, number of such empty items is rel-
atively high, making the compression of inverted files
ineffective.

Query evaluation After an query has been parsed, in-
formation about each of its distinct terms is stored in
a general list data structure. This information includes

IR I i
1 2 3 5 6
#str 2 4 5 7 8 9 10
|
0| 0| O | <article> 1
— XML Retrieval 1 1| 1| 0| <atl> 2
—1 First N. 2 0 | 2 | 0 | <ausequence="first"> 3
— Surname 3 \ 2|11\ 0| <fnm> 4 |=
—| Everything 4 \ 32| 0| <ref> 5 |=-
—| Everything about and . 5 \ 0|5 | 0 | <sec> 6
—— XML 6 \ 4110 <st 7=
XML Retrieval 7 \ 52| 0|<p> 8 |=—
#ont # \ 6| 1|17 <it> 9 |=—
712 | 4 <it> 10 |=—
#ixt #par #pos #mrk #

Figure 3: Example of textual, structural and their mapping files. The picture conceptually describes a database
which has only one XML document, namely, the document presented in Figure 1. The arrows represent explicit
or implicit links from a file to another. To each file, the field # is added to show the item number. The contextual
file is shown at the bottom left. It contains 7 items, each for one textual node of the document. The ranking is
first done in the IR manner for these items. In this process, the system can use the mapping file (top) to map the
items with their path in the structural file (bottom right). In the structural file, the #par link a node to its parent.
For example, the value 2 of #par for the last item (item number 10) means that its parent is at 2 positions ahead,
that is, is the item number 10-2=8. The columns #txt and #pos are used to rebuild nodes. For example, rebuilding
of item number 8 begins from building its initial string value <p> Everything about and . </p>, then the next
structural items are taken to insert into this string since they are the item’s children. Value #par = 17 of item 9
shows that the corresponding node should be inserted to position 17 after <p> (its preceding markup), making
the above string become <p> Everything about XML </it> and . </p>. Similarly, item number 10 should be
inserted to this string at position 4 after </it>.

representation of the term itself, list of the query’s
<ce> paths that contains the term (with a special value
to represent “any path”), and the frequency for each of
these paths. The evaluation then involves the following
main steps:

selection step is a) to delete some anomalies, and b)
to select the nodes with the top scores. There are
three situations where a node is considered abnor-
mal. The first case is when the node or any of its
descendants has negative score. The second case
happens when the parent of the node scores higher
than it as well as any of its siblings. The motivation
behind this case is to avoid retrieving the descen-
dants of retrieved nodes. The third case is applied

1. Scoring: Conventional vector space technique,
with an adjustment to take into account structural
conditions of queries, is employed to calculate sim-

ilarity score for each textual item. The weighting
scheme for this step is reported in section 4.

. Propagation: The scores obtained are propagated
upward in the XML tree, hence awarding the in-
ternal (not necessarily being structural) nodes with
some scores. The techniques for doing this step is
shown in section 5.

. Selection: After the previous step we come up with
a list of nodes with non-zero scores. The task of the

only to content-and-structure queries. It involves
the clearing of scores of the nodes that do not be-
long to the <te> list.

. Presentation: The list of the nodes with the top

scores is now used to retrieve the actual nodes. In
this step, we use information from the structural
file to rebuild the full node. Figure 3 serves as an
example for this process.

For simplicity, the first and second steps, and only them,
are referred to as the first and second, respectively, phase
of the query evaluation process.

4 Weighting Textual Items

The weighting scheme employed for the textual items
is based on our impact transformation technique [Anh
and Moffat, 2002]. The weight is an integer number and
computed as

Sa,q = ZtEQOdpd’q’t - Wd,t - We,t

where pq,,,; is cross-structural importance of ¢ relative
to d and ¢, wq¢ and wy ¢ are quantized impact of term ¢
in textual item d and query g, respectively.

The cross-structural importance is defined by

— w w e e
Pd,q;t = Cw*Pd,q,t T €@ *Pd,qt T Ce Pd,gt T Co Pag,t -

Here ¢y, ¢z, ¢. and ¢z are constants and, in this series of
experiments, are set to 1, 10, -10 and -20, respectively.
Other values are generally 0 except for the following
special cases:

® py,.issetto1if ¢ appearsin either /query/cw or
/query/kw, and d is any textual item,

. pg’,q,t =1 i_f t appears in /query/cw/nw, and d is
any textual item,

e pf .+ = 1if ¢t appears in an /query/ce/cw field
an 4the parent of this field contains at least one item
that is the same as, or the ancestor of, the path name
of the textual element d,

. pfi’q’t = 1 if ¢t appears in an /query/ce/cw/nw
field, and the ancestor /query/ce of this field con-
tains at least one item that is the same as, or the
ancestor of, the path name of the textual element d.

Each of the quantized impacts wq ; and wy ¢ is in the
range 1 to 2°, with (in these experiments) b = 5. Each
of them is calculated in two steps. First, a normal cosine
similarity is used to compute wj , and wy ,

way = (1+]log, faz)
Wd = ng,t
ted
Wi o= 1/((1—s)+s Wa/W?)
wgy = wa/Wg
wy, = log, (1 + fT) (1 +log, fq,t)

where fq; is the term frequency in the textual item, f, ;
is frequency of ¢ in the textual part of the query ¢ (that
is, fq,¢ is calculated without considering the markups);
f+ is the number of textual items that contain term ¢;
f™ is the greatest value of f; in the textual file; Wy is

length of the textual item d; W is the average value of
W4 over all items of the textual file; and W7 represents
the normalized item length using pivoted normalization
[Singhal et al., 1996] with a slope of s = 0.7.

Then, a small enough positive value L and a large
enough positive value U are chosen such that all of the
wg , lie between L and U, thereby allowing the follow-
ing transformation to be calculated:

, logwy, —logU
W, ¢ 27 .
logU —log L + ¢
o ob . logwy ;, —logU
@ logU —log L + ¢
in which B = (U/L)*/(U~L) and e is a small positive

quantity, and the impact values are recorded and used as
integers.

Our experiments made use of two different types of
transformation, characterized by the choice of L and U.
In the first, referred to as global, the values of L and
U respectively are the minimum and maximum values
of wj , over the whole textual file. In the second, re-
ferred'to as local, each textual item or query z is associ-
ated with its own L and U, which are the minimum and
maximum among all of the values wj ; generated from
. That is, in the local transformation, a value wy 4 I8
transformed with respect to the values of L and U of z
— the textual item or query it belongs to.

5 Propagating Scores

After having the scores of the textual nodes, the next
step is to propagate the scores upward in the XML trees
(or tree). Two methods are investigated in our experi-
ments. In the description of the methods (below) it is
supposed that the propagation is being done for a node
b whose parent is a, and that a has totally n children, of
them m have non-zero (possibly negative) score.

The first method is called maximum-by-category.
Here, each distinct term is called a category. For this
method, whenever a score is computed, regardless of
whether the computation belongs to the first or the sec-
ond phase of the evaluation process, it is calculated sep-
arately and kept separately for each category. A real
score of an item is then the sum of its scores over the
categories. Hence the categorical score of b can be rep-
resented as (s (b), s2(b), - - -, 8¢/ (b)), and the real score
forbis

where |g| is number of distinct terms of query ¢g. The
score s(a) of a is computed based on
si(a) = s;(a) + sign s;(b) - a - mbax|sz~(b)|,

where |s;(b)| is the absolute value of s;(b), « is a con-
stant and is set to 0.8 in these experiments.

Label
um_mgx21_short
Queries: not having <kw> elements

Type of transformation: global

Propagation method: summation
um-_mgx2_long

Queries: having <kw> elements

Type of transformation: global

Propagation method: maximum-by-category
um_mgx26_long

Queries: having <kw> elements

Type of transformation: local

Propagation method: maximum-by-category

Characteristics

Table 1: Settlement of the experiments

The second method of propagation is called summa-
tion. It involves not only the calculation of s(a) but also
the re-scoring of s(b). s(a) is computed as

s(a) = s(a) + Y _(B-s(b)/n+ - s(b)/m)
b

and s(b) is redefined as

5(b) = 5(b) — (8- 5(b)/n + - s(b)/m).

where 8 and +y are constants. Both of them are set to 0.5
in the experiments reported below.

6 Experiments

Hardware The experiments were carried out on a 933
MHz Intel Pentium 111 with 1 GB RAM, a 9 GB SCSI
disk for system needs, and four 36 GB SCSI disks in
a RAID-5 configuration for data. The indicative times
reported below are for experiments in which there was
no other activity on the hardware.

Experiment parameters Three experiments were
conducted. Their labels and settings are listed in Ta-
ble 6.

References

V. N. Anh and A. Moffat. Impact transformation: effective
and efficient web retrieval. In M. Beaulieu, R. Baeza-Yates,
and S. H. Myaeng, editors, Proc. 25th Annual International
ACM S GIR Conference on Research and Development in
Information Retrieval, pages 3—10, Tampere, Finland, Aug.
2002. ACM Press, New York.

D. Carmel, N. Efraty, G. M. Landau, Y. S. Maarek, and
Y. Mass. An extention of the vector space model for query-
ing XML documents via XML fragments. In Proc. S-
GIR 2002 Workshop on XML and Information Retrieval,
pages 14-25, Tampere, Finland, Aug 2002.

W. Croft, D. Harper, D. Kraft, and J. Zobel, editors. Proc. 24th
Annual International ACM SGIR Conference on Research
and Development in Information Retrieval, New Orleans,
Louisiana, USA, Sept. 2001. ACM Press, New York.

P. Elias. Universal codeword sets and representations of the
integers. |EEE Transactions on Information Theory, 21(2):
194-203, Mar. 1975.

N. Fuhr, N. Govert, G. Kazai, and M. Lalmas. INEX: Initiative
for the Evaluation of XML Retrieval. In Proc. SGIR 2002
Workshop on XML and I nformation Retrieval, pages 62-70,
Tampere, Finland, Aug 2002.

N. Fuhr, N. Govert, and T. Rolleke. Dolores: A system for
logic-based retrieval of multimedia objects. In W. B. Croft,
A. Moffat, C. J. van Rijshergen, R. Wilkinson, and J. Zobel,
editors, Proc. 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, pages 257-265, Melbourne, Australia, Aug. 1998.
ACM Press, New York.

N. Fuhr and K. GroBjohamn. XIRQL: a query language for
information retrieval in XML. In Croft et al. [2001], pages
172-180.

T. Grabs and H. Schek. Generating vector spaces on-the-fly
for flexible XML retrieval. In Proc. SGIR 2002 Workshop
on XML and Information Retrieval, pages 4-13, Tampere,
Finland, Aug 2002.

A. Singhal, C. Buckley, and M. Mitra. Pivoted docu-
ment length normalization. In H.-P. Frei, D. Harman,
P. Schauble, and R. Wilkinson, editors, Proc. 19th An-
nual International ACM S GIR Conference on Research
and Development in Information Retrieval, pages 21-29,
Aug. 1996.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Mor-
gan Kaufmann, San Francisco, second edition, 1999.

